
Software was an integral part in the Space Shuttle hardware systems

and it played a vital role in the design and operations of the shuttle.

The longevity of the program demanded the on-orbit performance

of the vehicle to be flexible under new and challenging environments.

Because of the flexibility required, quick-turnaround training,

simulations, and virtual reality tools were invaluable to the crew

for new operational concepts. In addition, ground operations

also benefited from software innovations that improved vehicle

processing and flight-readiness testing. The innovations in software

occurred throughout the life of the program. The topics in this

chapter include specific areas where engineering innovations in

software enabled solutions to problems and improved overall

vehicle and process performance, and have carried over to the next

generation of space programs.

256 Engineering Innovations

Software

Introduction
Gail Chapline
Steven Sullivan

Primary Software
Aldo Bordano

Geminesse Dorsey
James Loveall

Personal Computer Ground
Operations Aerospace Language
Offered Engineers a “View”
Avis Upton

The Ground Launch Sequencer
Orchestrated Launch Success
Al Folensbee

Integrated Extravehicular
Activity/Robotics
Virtual Reality Simulation
David Homan

Bradley Bell
Jeffrey Hoblit
Evelyn Miralles

Integrated Solutions for Space Shuttle
Management…and Future Endeavors
Samantha Manning

Charles Hallett
Dena Richmond
Joseph Schuh

Three-Dimensional Graphics Provide
Extraordinary Vantage Points
David Homan

Bradley Bell
Jeffrey Hoblit
Evelyn Miralles

Primary Software

NASA faced notable challenges in

the development of computer software

for the Space Shuttle in the early

1970s. Only two avionics computers

were regarded as having the potential

to perform the complex tasks that

would be required of them. Even

though two options existed, these

candidates would require substantial

modification. To further compound

the problem, the 1970s also suffered

a noticeable absence of off-the-shelf

microcomputers. Large-scale,

integrated-circuit technology had

not yet reached the level of

sophistication necessary for Orbiter

use. This prompted NASA to continue

its search for a viable solution.

NASA soon concluded that core

memory was the only reasonable

choice for Orbiter computers, with the

caveat that memory size was subject

to power and weight limitations as

well as heat constraints. The space

agency still faced additional obstacles:

data bus technology for real-time

avionics systems was not yet fully

operational; the use of tape units for

software program mass storage in

a dynamic environment was limited

and unsubstantiated; and a high-order

language tailored specifically for

aerospace applications was nonexistent.

Even at this early juncture, however,

NASA had begun developing a

high-order software language—

HAL/S—for the shuttle. This software

would ultimately become the standard

for Orbiter operations during the Space

Shuttle Program.

Software Capability Beyond
Technology Limits

NASA contemplated the number of

necessary computer configurations

during the early stages of Space Shuttle

development. It took into consideration

the segregation of flight control from

guidance and navigation, as well as the

relegation of mechanized aerodynamic

ascent/re-entry and spaceflight

functions to different machines.

These considerations led to a tightly

coupled, synchronized fail-

operational/fail-safe computation

requirement for flight control and

sequencing functions that drove the

system toward a four-machine computer

complex. In addition, the difficulties

NASA faced in attempting to

interconnect and operate multiple

complexes of machines led to the

development of a single complex

with central integrated computation.

NASA added a fifth machine for

off-loading nonessential mission

applications, payload, and

system-management tasks from the

other four machines. Although this

fifth computer was also positioned to

handle the additional computation

requirements that might be placed on

the system, it eventually hosted the

backup system flight software.

The space agency had to determine

the size of the Orbiter computer

memory to be baselined and do so

within the constraints of computer

design and vehicle structure. Memory

limitations posed a formidable

Engineering Innovations 257

Personal Computer Ground
Operations Aerospace Language
Offered Engineers a “View”
Personal Computer Ground Operations Aerospace Language (PCGOAL) was a custom,

PC-based, certified advisory system that provided engineers with real-time data display

and plotting. The enhanced situational awareness aided engineers with the decision-

making process and troubleshooting during test, launch, and landing operations.

When shuttle landings first began at Dryden Flight Research Center (DFRC), California,

Kennedy Space Center (KSC) engineers had limited data-visualization capability. The

original disk operating system (DOS)-based PCGOAL first supported KSC engineers

during the STS-34 (1989) landing at DFRC. Data were sent from KSC via telephone

modem and engineers had visibility to the Orbiter data on site at DFRC. Firing room

console-like displays provided engineers with a familiar look of the command and

control displays used for shuttle processing and launch countdown, and the application

offered the first high-resolution, real-time plotting capability.

PCGOAL evolved with additional capabilities. After design certification review in

1995, the application was considered acceptable for decision making in conjunction

with the command and control applications in the firing rooms and DFRC. In 2004,

the application was given a new platform to run on a Windows 2000 operating system.

As the Windows-based version of PCGOAL was being deployed, work had already begun

to add visualization capabilities. The upgraded application and upgraded editor were

deployed in December 2005 at KSC first and later at DFRC and Marshall Space Flight

Center/ Huntsville Operations Support Center.

challenge for NASA early in the

development phase; however, with the

technological advancements that soon

followed came the ability to increase

the amount of memory.

NASA faced much skepticism from

within its organization, regarding the

viability of using a high-order language.

Assembly language could be used to

produce compact, efficient, and fast

software code, but it was very similar in

complexity to the computer’s machine

language and therefore required the

programmer to understand the

intricacies of the computer hardware and

instruction set. For example, assembly

language addressed the machine’s

registers directly and operations on the

data in the registers directly.

While it might not result in as fast and

efficient a code, using a high-order

programming language would provide

abstraction from the details of the

computer hardware, be less cryptic and

closer to natural language, and therefore

be easier to develop and maintain. As

the space agency contracted for the

development of HAL/S, program

participants questioned the software’s

ability to produce code with the size,

efficiency, and speed comparable to

those of an assembly language program.

All participants, however, supported a

top-down structured approach to

software design.

To resolve the issue and quell any fears

as to the capability of HAL/S, NASA

tested both options and discovered that

the nominal loss in efficiency of the

high-order language was insignificant

when compared to the advantages

of increased programmer productivity,

program maintainability, and visibility

into the software. Therefore, NASA

selected HAL/S for all but one

software module (i.e., operating system

software), thus fulfilling the remaining

baselined requirements and approach.

Operating Software for
Avionics System

The Orbiter avionics system operation

required two independent software

systems with a distinct hierarchy and

clear delegation of responsibilities.

The Primary Avionics Software System

was the workhorse of the two systems.

It consisted of several memory loads

and performed mission and system

functions. The Backup Flight System

software was just that: a backup.

Yet, it played a critical role in the safety

and function of the Orbiter. The Backup

Flight System software was composed

of one memory load and worked only

during critical mission phases to provide

an alternate means of orbital insertion or

return to Earth in the event of a Primary

Avionics Software System failure.

Primary Avionics Software System

The Primary Avionics Software System

performed three major functions:

guidance, navigation, and control of

the vehicle during flight; the systems

management involved in monitoring

and controlling vehicle subsystems;

and payload—later changed to

vehicle utility—involving preflight

checkout functions.

The depth and complexity of Orbiter

requirements demanded more

memory capacity than was available

from a general purpose computer.

As a solution, NASA structured

each of the major functions into

a collection of programs and

capabilities needed to conduct a

mission phase or perform an integrated

function. These collections were

called “operational sequences,” and

they formed memory configurations

that were loaded into the general

purpose computers from on-board

tape units. Memory overlays were

inevitable; however, to a great extent

NASA structured these overlays only

in quiescent, non-dynamic periods.

The substructure within operational

sequences was a choreographed

network consisting of major modes,

specialist functions, and display

functions. Major modes were

substructured into blocks that

segmented the processes into steps or

sequences. These blocks were linked

to cathode ray tube display pages so

the crew could monitor and control the

function. The crew could initiate

sequencing through keyboard entry.

In certain instances, sequencing could

be initiated automatically by the

software. Blocks within the specialist

functions, initiated by keyboard entry,

were linked to cathode ray tube pages.

These blocks established and presented

valid keyboard entry options available

to the crew for controlling the

operation or monitoring the process.

Major modes accomplished the

primary functions within a sequence,

and specialist functions were used for

secondary or background functions.

The display functions, also initiated by

keyboard input, contained processing

necessary to produce the display and

were used only for monitoring data

processing results.

Backup Flight System

The Backup Flight System remained

poised to take over primary control in

the event of Primary Avionics Software

System failure, and NASA thoroughly

prepared the backup system for this

potential problem. The system

consisted of the designated general

purpose computer, three backup flight

controllers, the backup software, and

associated switches and displays.

As far as designating a specific general

purpose computer, NASA did not favor

any particular one over the others—

any of the five could be designated the

backup machine by appropriate

keyboard entry. The designated

computer would request the backup

258 Engineering Innovations

Engineering Innovations 259

Liftoff from Kennedy
Space Center, Florida

Launch Preparation
at Kennedy Space
Center, Florida

Operational
Sequence 901

Operational
Sequence 102

Operational
Sequence 104

Optional Operational
Sequence 601

Operational
Sequence 103

Orbital Maneuvering
System 1

Operational
Sequence 101

Solid Rocket
Booster Separation

External Tank
Separation

Nominal Orbit ~278 km
(150 nautical miles)

Entry Interface

Landing

Orbital Maneuvering
System Orbital Insertion

On-orbit Operations

Orbital Maneuvering
System Deorbit Burn

Operational
Sequence 105

Operational
Sequence 106

Operational
Sequence 201

Operational
Sequence 302

Operational
Sequence 303

Operational
Sequence 304

Operational
Sequence 305

Operational
Sequence 901

Operational
Sequence 301

Operational
Sequence 202

Operational
Sequence 801

Orbital Maneuvering
System 2

Orbiter Flight
Computer Software

System
Software

Operational
Sequence 0

Idle

Operational
Sequence 9

Pre-count/
Postlanding

901
Con�guration
Monitor

Applications
Software

Guidance,
Navigation, and

Control

Systems
Management Payload

Operational
Sequence 1

Ascent

101
Terminal
Count

Operational
Sequence 2

On Orbit

201
Orbit Coast

Operational
Sequence 8

On-orbit
Checkout

801
On-orbit
Checkout

Operational
Sequence 3

Entry

301
Pre-deorbit
Coast

Operational
Sequence 2

Orbit/Doors

201
Orbit
Operations

202
Payload
Bay Door
Operations

Operational
Sequence 4*
Orbit/Doors

401
Orbit
Operations

402
Payload
Bay Door
Operations

Operational
Sequence 9

Mass Memory
Utility

901
Mass
Memory

302
De-deorbit
Execution

303
Pre-entry
Monitor

304
Entry

305
Terminal Area Energy
Management/Landing

202
Maneuver
Execution

103
Second Stage
104
Orbital
Maneuvering
System 1
Insertion

105
Orbital
Maneuvering
System 2
Insertion

106
Insertion Coast

102
First Stage

Operational
Sequence 6

Return to
Launch Site

601
Return to Launch Site
Second Stage

602
Glide
Return to Launch Site 1

603
Glide
Return to Launch Site 2

* Systems Management Operational
 Sequence 4 was planned for
 additional payload capabilities
 but was not used.

Due to computer memory limitations, the flight software was divided into a number of separate programs called operational sequences.
Each sequence provided functions specific to a particular mission phase and were only loaded into memory during that phase of flight.

Mission Phase With Corresponding Operational Sequences and Major Modes

software load from mass memory. The

backup computer would then remain

on standby. During normal operations,

when the primary system controlled

the Orbiter, the backup system operated

in “listen” mode to monitor and obtain

data from all prime machines and

their assigned sensors. By acquiring

these data, the Backup Flight System

maintained computational currency and,

thus, the capability to assume control

of the Orbiter at any time.

NASA independently developed and

coded the software package for the

Backup Flight System as an added

level of protection to reduce the

possibility of generic software errors

common to the primary system.

The entire Backup Flight System was

contained in one memory configuration,

loaded before liftoff, and normally

maintained in that machine.

Success—On Multiple Levels

NASA overcame the obstacles it

faced in creating the shuttle’s Primary

Avionics Software System through

ingenuity and expertise. Even

technology that was current during

the initial planning stages did not

impose limits on what the space

agency could accomplish in this area.

NASA succeeded in pushing the

boundaries for what was possible by

structuring a system that could handle

multiple functions within very real

parameters. It also structured a backup

support system capable of handling

the demands of spaceflight at a critical

moment’s notice.

260 Engineering Innovations

During launch countdown, the ground

launch sequencer was like an orchestra’s

conductor. Developed in 1978, the

sequencer was the software supervisor

of critical command sequencing and

measurement verification from 2 hours

before launch time to launch time

and through safing, thus assuring a steady

and an appropriate tempo for a safe and

successful launch.

Engineered to expedite and automate

operations and maximize automatic error

detection and recovery, the ground launch

sequencer focused on “go/no-go” criteria.

Responding to a no-go detection, it could

initiate a countdown hold, abort, or

recycle or contingency operations. While

controlling certain monitoring aspects, the

sequencer did not reduce the engineer’s

capability to monitor his or her system’s

health/integrity; however, by assuming

command responsibility, it integrated

launch requirements and activities,

and reduced communication traffic and

required hardware. Manual intervention

was available for off-nominal conditions.

The four ground launch sequencer

components included: exception

monitoring; sequencer; countdown clock

control; and safing. For exception

monitoring, the sequencer continuously

monitored more than 1,200 measurements.

If a measurement violated its expected

value, the sequencer checked whether the

measurement was part of a voting logic

group. If voting failed, it automatically

caused the countdown to hold at the next

milestone or abort the countdown.

The sequencer provided a single point of

control during countdown, issuing all

commands to ground and flight equipment

from the designated period called T minus

9 minutes (T=time) through liftoff.

It verified events required for liftoff. If an

event wasn’t completed, an automated

hold/recycle was requested.

Clock control provided the required

synchronization between ground and

vehicle systems and managed countdown

holds/recycles. Clock control allowed the

sequencer to resume the countdown

after a problem was resolved. The safing

component halted the Orbiter’s on-board

software and, based on the progression

of the sequencer, commanded ground

and flight systems into a safe configuration

for crew egress.

The Ground Launch Sequencer Orchestrated Launch Success

Launch countdown operations in Firing Room 4
at Kennedy Space Center, Florida.

Integrated
Extravehicular
Activity/Robotics
Virtual Reality
Simulation

As the Space Shuttle Program

progressed into the 1990s, the

integration of extravehicular activity

(EVA) and robotics took on a whole

new importance when Hubble Space

Telescope servicing/repair (first flight

1993) and space-based assembly of the

International Space Station (ISS) tasks

were realistically evaluated.

Two motivating factors influenced

NASA’s investigation into the potential

use of virtual reality technology that

was barely in its infancy at that time.

The first factor was in response to a

concern that once Hubble was deployed

on orbit future astronauts and flight

controllers would not have easy access

to the telescope to familiarize

themselves with the actual hardware

configuration to plan, develop, and

review servicing procedures.

The second factor was based on

previous on-orbit experience with the

interaction and communication between

EVA crew members and Shuttle

Robotic Arm operators. NASA

discovered that interpreting instructions

given by a crew member located in a

foot restraint on the end of the robotic

arm was not as intuitive to the arm

operator as first thought, especially

when both were not in the same body

orientation when giving or receiving

commands. The EVA crew member

could, for example, be upside down

with respect to the robotic arm operator

in microgravity. Therefore, the

command to “Move me up” left the

arm operator in a quandary trying to

decide what “up” actually meant.

NASA Embraces Advances
in Virtual Reality

It was at this same time in the early

1990s that virtual reality hardware

started to enter the commercial world

in the form of head-mounted displays,

data gloves, motion-tracking

instruments, etc.

In the astronaut training world, no

facility allowed an EVA crew member

to ride on a robotic arm operated by

another crew member in a realistic

space environment. The Water

Emersion Test Facility at Johnson

Space Center (JSC) in Houston, Texas,

provided a training arena for EVA crew

members, but the confined space and

the desire to not require subjects to be

heads down for more than very short

periods of time did not allow for suitable

integrated training between the EVA

crew and the robotic arm operators.

Likewise, the Manipulator Development

Facility’s hydraulic arm and the

computer graphic-based robotic arm

simulators at JSC were not conducive

for EVA crew interaction.

Virtual reality provided a forum to

actually tie those two training scenarios

together in one simulation. Working

closely with the astronaut office, NASA

engineers took commercially available

virtual reality hardware and developed

the computer graphic display software

and across-platform communications

software that linked into existing

“man-in-the-loop” robotic arm computer

simulations to produce an integrated

EVA/robotics training capability.

Virtual Reality Is Put to the Test

The first use of these new capabilities

was in support of crew training for

Space Transportation System (STS)-61

(1993)—the Hubble Space Telescope

servicing mission. The virtual reality

simulation provided a flight-like

environment in which the crew was

able to develop and practice the

intricate choreography between the

Shuttle Robotic Arm operator and the

EVA crew member affixed to the end of

that arm. The view in the head-mounted

display was as it would be seen by the

astronaut working around the Hubble

berthed in the shuttle payload bay at an

orbital altitude of 531 km (330 miles)

above the Earth.

The next opportunity to take advantage

of the virtual reality software involved

EVA crew members training to perform

the first engineering test flights of the

Engineering Innovations 261

Astronaut Mark Lee trains for his Simplified Aid for EVA Rescue test flight (STS-64 [1994]) using the
virtual reality flight trainer (left) and on orbit (right).

Simplified Aid for EVA Rescue

(SAFER) on STS-64 (1994).

The output of a dynamic simulation

of the SAFER backpack control system

and its flying characteristics, using

zero-gravity as a parameter, drove the

head-mounted display visual graphics.

Inputs to the simulation were made

using a flight-equivalent engineering

unit hand controller. The EVA crew

member practiced and refined the flight

test maneuvers to be flown during

on-orbit tests of the rescue unit. The

crew member could see the on-orbit

configuration of the shuttle payload bay,

the robotic arm, and the Earth/horizon

through the virtual reality head-mounted

display at the orbital altitude planned

for the mission. The EVA crew member

was also able to interact with the robotic

arm operator as well as see the motions

of the arm, which was an integral

part of the on-orbit tests. The robotic

arm operator was also able to view the

EVA crew member’s motions in the

simulated shuttle payload bay camera

views made available to the operator as

part of the dynamic man-in-the-loop

robotic arm simulation.

As a result of the engineering flights

of the SAFER unit on STS-64, NASA

was able to validate the virtual reality

simulation and it became the ground-

based SAFER training simulator used

by all EVA crew members assigned

to space station assembly missions.

Each EVA crew member was required

to have at least four 2-hour training

classes prior to a flight to practice flying

rescue scenarios with the unit in the

event he or she became separated from

the space vehicle during an EVA.

NASA also developed a trainer that

was flown on board the space station

laptop computers. The trainer used the

same simulation and display software

as the ground-based simulator, but it

incorporated a flat-screen display

instead of a head-mounted display.

It also used the same graphic model

database as the ground-based

simulators. ISS crew members used

the on-board trainer to maintain

SAFER hand controller proficiency

throughout their time on the ISS.

Handling Large Objects During
Extravehicular Activity

Learning to handle large objects in the

weightlessness of space also posed a

unique problem for EVA crew members

training in ground-based facilities. In

the microgravity environment of space,

objects may be weightless but they still

have mass and inertia as well as a mass

distribution around a center of gravity.

NASA engineers developed a tendon-

driven robot and a set of dynamic

control software to simulate the feel

and motion of large objects being

handled by an EVA crew member within

the zero-gravity parameter. The basic

concept was to mount a reel of cable

and an electric drive motor at each of

the eight corners of a structure that

measured approximately 3 m (10 ft)

on a side. Each cable was then attached

to one of the eight corners of an

approximately 0.6-m (2-ft) cube.

In this configuration, the position and

orientation of the smaller cube within

the large structure could be controlled

by reeling in and out the cables. Load

cells were mounted to the smaller cube

262 Engineering Innovations

Astronauts Richard Linnehan (above left) and Nancy Currie (below) use the zero-gravity mass handling simulation and the Shuttle Robotic Arm simulation to
practice combined operations prior to flight. The large image on the right is a rendering of the simulation. The inset is an actual photo of Astronaut Richard
Linnehan (STS-109 [2002]) unfolding a solar array while anchored to the end of the robotic arm.

while handrails or other handling

devices were attached to the load cells.

As a crew member applied force to

the handling device, the load cells

measured the force and fed those

values to a dynamic simulation that

had the mass characteristics of the

object being handled as though it

were in weightlessness. Output from

the computer program then drove the

eight motors to move the smaller

cube accordingly. Once these elements

were integrated into graphics in the

head-mounted display, the crew

member not only felt the resulting

six-degree-of-freedom motion of the

simulated object, he or she also saw a

three-dimensional (3-D) graphical

representation of the real-world object

in its actual surrounding environment.

The mass handling simulation—called

kinesthetic application of mechanical

force reflection—was qualitatively

validated over a number of shuttle

flights starting with STS-63 (1995).

On that flight, EVA crew members

were scheduled to handle objects

that weighed from 318 to 1,361 kg

(700 to 3,000 pounds) during an EVA.

After their flight, they evaluated the

ability of the application to simulate

the handling conditions experienced

in microgravity.

Kinesthetic application of mechanical

force reflection was deemed able to

faithfully produce an accurate

simulation of the feel of large

objects being handled by EVA crew

members following a number of

postflight evaluations.

Kinesthetic application of mechanical

force reflection was also integrated with

the Shuttle Robotic Arm simulation,

which allowed the EVA crew member

riding on the end of the arm to actually

feel the arm-induced motion in a large

payload that he or she would be holding

during a construction or repair operation

around the ISS or Hubble.

NASA built two kinesthetic application

of mechanical force reflections so that

two EVA crew members could train to

handle the same large object from two

different vantage points. The forces and

motion input by one crew member were

felt and seen by the other crew member.

This capability allowed crew members

to evaluate mass handling techniques

preflight. It also allowed them to work

out not only the command protocol

they planned to use, but also which

crew member would be controlling the

object and which would be stabilizing

the object during the EVA.

Virtual Reality Simulates
On-orbit Conditions

Following the Columbia accident

in 2003, as a shuttle approached the

space station, space station crew

members photographed its Thermal

Protection System from a distance

of 183 m (600 ft) using digital

cameras with 400mm and 800mm

telephoto lenses.

As in previous scenarios, there was

no place on Earth where crew

members could practice photographing

a Space Shuttle doing a 360-degree

pitch maneuver at a distance of

183 m (600 ft). Virtual reality was

again used to realistically simulate the

on-orbit conditions and provide

ground-based training to all space

station crew members prior to their

extended stay in space.

Engineers placed a cathode ray tube

display from a head-mounted display

inside a mocked-up telephoto lens.

The same 3-D graphic simulation that

was used to support the previous

applications drove the display in the

telephoto lens to show a shuttle doing

the pitch maneuver at a range of

183 m (600 ft). With a real camera

body attached to the mocked-up lens,

each crew member could practice

photographing the shuttle during its

approach maneuver.

Summary

NASA took advantage of the benefits

that virtual reality had to offer.

Beginning in 1992, the space agency

used the technology at JSC to

support integrated EVA/robotics

training for all subsequent EVA flights,

including SAFER engineering flights,

Hubble repair/servicing missions,

and the assembly and maintenance of

the ISS. Each EVA crew member spent

from 80 to 120 hours using virtual

reality to train for work in space.

Engineering Innovations 263

International Space Station Expedition 10 crew members Leroy Chiao (left) and Salizhan Sharipov train
in virtual reality to photograph an approaching Orbiter through the space station windows. The lower
pictures show what each sees through his respective camera view finder.

800mm Lens 400mm Lens

264 Engineering Innovations

Kennedy Space Center (KSC) developed an integrated, wireless,

and paperless computer-based system for management of the

Space Shuttle and future space program products and processes.

This capability was called Collaborative Integrated Processing

Solutions. It used commercial off-the-shelf software products to

provide an end-to-end integrated solution for requirements

management, configuration management, supply chain planning,

asset life cycle management, process engineering/process

execution, and integrated data management. This system was

accessible from stationary workstations and tablet computers

using wireless networks.

Collaborative Integrated Processing Solutions leveraged the

successful implementation of Solumina® (iBASEt, Foothill Ranch,

California)—a manufacturing execution system that provided

work instruction authorization, electronic approval, and paperless

work execution. Solumina® provided real-time status updates to

all users working on the same document. The system provided for

electronic buy off of work instructions, electronic data collection,

and embedded links to reference materials. The application

included electronic change tracking and configuration

management of work instructions. Automated controls provided

constraints management, data validation, configuration, and

reporting of consumption of parts and materials.

In addition, KSC developed an interactive decision analysis and

refinement software system known as Systems Maintenance

Automated Repair Tasks. This system used evaluation criteria

for discrepant conditions to automatically populate a

document/procedure with predefined steps for safe, effective,

and efficient repair. It stored tacit (corporate) knowledge, merging

hardware specification requirements with actual “how-to” repair

methods, sequences, and required equipment. Although the

system was developed for Space Shuttle applications, its

interface is easily adaptable to any hardware that can be broken

down by component, subcomponent, discrepancy, and repair.

Integrated Solutions for Space Shuttle Management…
and Future Endeavors

Requirements,
data, corporate
knowledge, etc.

Requirements,
data, corporate
knowledge, etc.

The person assembling
the procedure must bring
everything together.

The Systems Maintenance Automated
Repair Tasks system assembles the
procedure for the user.

User

Standard Method

Repair
Procedure

Systems Maintenance
Automated Repair Tasks
System Repair Procedure

Using Systems Maintenance
Automated Repair Tasks System

data, corporate
,stnemeriuqeR

data, corporate
MethoddradnatS

data, corporate
,stnemeriuqeR

SAutomated Repair Tasks
Systems Maintenance gnisU

metsyS
Systems Maintenance

the procedure must bring
The person assembling

knowledge, etc.

Procedure

the procedure must bring
The person assembling

knowledge, etc.

Repair

resU

Repair Tasks
Systems Maintenance Automated The

knowledge, etc.

 system assembles the Repair Tasks
Systems Maintenance Automated

System Repair Procedure
Automated Repair Tasks
Systems Maintenance

System Repair Procedure
Automated Repair Tasks
Systems Maintenance

everything together.
the procedure must bring

everything together.
the procedure must bring

procedure for the user.
Repair Tasks

procedure for the user.
 system assembles the Repair Tasks

Systems Maintenance Automated Repair Tasks Solution Philosophy—Variables

The Systems Maintenance Automated Repair Tasks allowed corporate knowledge to be kept in-house while increasing efficiency and lowering cost.

Three-Dimensional
Graphics Provide
Extraordinary
Vantage Points

Astronauts’ accomplishments in

space seem effortless, yet they spent

many hours on the ground training

and preparing for missions.

Some of the earliest engineering

concept development and training took

place in the Johnson Space Center

Virtual Reality Laboratory and involved

the Dynamic Onboard Ubiquitous

Graphics (DOUG) software package.

NASA developed this three-

dimensional (3-D) graphics-rendering

package to support integrated training

among the Shuttle Robotic Arm

operators, the International Space

Station (ISS) Robotic Arm operators,

and the extravehicular activity (EVA)

crew members. The package provided

complete software and model database

commonality among ground-based

crew training simulators, ground-based

EVA planning tools, on-board robotic

situational awareness tools, on-board

training simulations, and on-board

EVA/robotic operations review tools

for both Space Shuttle and ISS crews.

Level-of-detail Capability

Originally, the software was written as

an application programming interface—

an interface that enables the software

to interact with other software—around

the graphics-rendering package

developed to support the virtual reality

Engineering Innovations 265

The International Space Station (ISS) has more than

2,300 handrails located on its exterior. These handrails

provide translation paths for extravehicular activity (EVA)

crew members. Pull-down menus in the Dynamic

Onboard Ubiquitous Graphics (DOUG) software allow the

user to highlight and locate each handrail. Entire

translation paths can be highlighted and displayed for

review by crew members prior to performing an EVA.

More than 620 work interface sockets are located on the

external structure of the ISS, and nine articulating

portable foot restraints can be relocated to any of the

work interface sockets. Each articulating portable foot

restraint has three articulating joints and a rotating base

that produce 33,264 different orientations for an EVA

crew member standing in that particular foot restraint.

Each work interface socket can be located in the

software package, and each articulating portable foot

restraint can be configured to show all potential worksites

and worksite configurations to support EVA planning.

The DOUG software package also contains and can

highlight the locations of externally mounted orbital

replacement units on the ISS, thruster and antenna

keep-out zones that affect EVA crew member positioning,

and articulating antennas, radiators, and solar arrays—

all of which are configurable.

Additional Extravehicular Activity Support

Articulated portable foot restraints configuration (top) and highlighted
translation path (bottom).

training simulation. The Simplified Aid

for EVA Rescue (SAFER) on-board

trainer required software that would run

on the original IBM 760 laptop

computers on board the ISS and thus

required the UNIX-based code to be

ported to a Windows-based operating

system. The limited graphics capability

of those computers also required

additional model database artifacts that

provided level-of-detail manipulation to

make the simulation adequate for its

intended purpose. This additional

level-of-detail capability allowed the

same high-fidelity model database

developed for EVA training in the

virtual reality facility to be used on

the laptop computers on the ISS.

To obtain adequate graphics

performance and screen update rates

for simulating SAFER flying, crew

members could select a low level-of-

detail scene, which still displayed

enough detail for the recognition of

station landmarks and motion cues.

The DOUG software package, when not

in use as a trainer, also provided a

highly detailed, interactive 3-D model of

the ISS that was viewable from any

vantage point via keyboard inputs. The

software first flew on board both shuttle

and station in March 2001, and during

Space Transportation System (STS)-102,

and was on all subsequent shuttle and

station flights with the exception of

STS-107 (2003). That flight did not

carry a robotic arm, had no planned

EVAs, and did not dock with the ISS.

Benefits for Robotic Arm
Operations

The DOUG software package supported

SAFER training. The software was

also capable of providing the situational

awareness function during Space

Station Robotic Arm operations by

connecting to the on-board payload

general support computer and

using the telemetry from the arm to

update the graphic representation in

the program display.

The same software was compatible with

laptop computers flown on the shuttle,

and the graphical Shuttle Robotic Arm

could be similarly driven with shuttle

arm telemetry. Different viewpoints

266 Engineering Innovations

Dynamic Onboard Ubiquitous Graphics displays multiple simulated camera and synthetic eye-point
views on the same screen. The simulated camera views show the Japanese Experiment Module and
the Columbus Laboratory in the top left image, the Mini Research Module-1 in the top right image,
and the International Space Station in the bottom image.

These two views show the effect of level-of-detail control. The left view is a high-resolution image compared to the low-resolution image on the right.

could be defined in the software to

represent the locations of various

television cameras located around

station and shuttle. The various camera

parameters were defined in the software

to display the actual field of view, based

on the pan and tilt capabilities as well as

the zoom characteristics of each camera.

The second ISS crew (2001) used

these initial capabilities to practice

for upcoming station assembly tasks

with the Space Station Robotic Arm

prior to the actual components

arriving on a shuttle flight. The crew

accomplished this by operating the

real robotic arm using the real hand

controllers and configuring a “DOUG

laptop” to receive remote manipulator

joint angle telemetry.

The graphics contained the station

configuration with the shuttle

docked and the station airlock

component located in the shuttle’s

payload bay. The arm operator could

see synthetic end-effector camera views

produced in the program. These views

showed the airlock with its grapple

fixture in the payload bay of the

Orbiter even though no Orbiter actually

existed. The operator practiced

maneuvering the real arm end-effector

onto an imaginary grapple fixture

and then maneuvering the real arm

with the imaginary airlock attached,

through the prescribed trajectory to

berth the imaginary airlock onto the

real common berthing mechanism

on the ISS Unity Node.

Through DOUG the arm operator

also had access to synthetic views from

all the shuttle cameras, as well as the

Space Station Robotic Arm cameras

that would be used during the actual

assembly operations. This made

training much more effective than

simply driving the robotic arm around

in open space.

Proximity Detection

As the ISS grew in complexity,

NASA added capabilities to the DOUG

software. Following a near collision

between the Space Station Robotic

Arm and one of the antennas located

on the laboratory module of the ISS,

the space agency added the ability to

detect objects close to one another—

i.e., proximity detection. The software

calculated and displayed the point of

closest approach for the main robotic

arm booms and the elbow joint to

any station or shuttle component

displayed in the model database.

A vector was drawn between each

of the three robotic arm components

and the nearest structure. When DOUG

received robotic arm telemetry data

and was being used for situational

awareness during robotic arm

operations, the color of these vectors

indicated whether measured distance

was increasing or decreasing. It also

indicated whether the relative distance

was within a user-defined, keep-out

envelope around the robotic arm. Both

audible and graphical warnings were

selectable to indicate when a keep-out

envelope was breached.

Engineering Innovations 267

The colors displayed in Dynamic Onboard Ubiquitous Graphics indicate direction of approach
of the robotic arm booms with respect to the closest object: green = opening; yellow = closing;
and red = envelope violation.

Thermal Protection System
Evaluation

During the preparation for Return

to Flight following the Columbia

accident in 2003, NASA incorporated

the entire shuttle Thermal Protection

System database and a “painting”

feature into the DOUG software

package. The database consisted of all

25,000+ tiles, thermal blankets,

reinforced carbon-carbon wing leading

edge panels, and nose cap.

The software was used preflight to

develop the trajectories of the Shuttle

Robotic Arm and Orbiter Boom Sensor

System used to perform in-flight

Orbiter inspections. The software

allowed engineers to “paint” the areas

that were within the specifications

268 Engineering Innovations

An example of the tile highlighting and painting feature in Dynamic Onboard Ubiquitous Graphics.

of various sensors on the Orbiter

Boom Sensor System (e.g., range,

field of view, incidence angle) to make

sure the Thermal Protection System

was completely covered during

on-orbit surveys.

The same configuration models and

tile database used on the ground were

also loaded on the on-board laptop

computers. This allowed the areas

of interest found during the survey

data analysis to be highlighted and

uplinked to the shuttle and station

crews for further review using the

DOUG program.

Inspection of the STS-114 (2005)

survey data showed protruding gap

fillers between tiles on the Orbiter.

These protrusions were of concern

for re-entry into Earth’s atmosphere.

Ground controllers were able to

highlight the surrounding tiles in the

database, develop a Space Station

Robotic Arm configuration with an

EVA crew member in a foot restraint on

the end, and uplink that configuration

file to the station laptop computers.

The crew members were then able to

use the software to view the area of

concern, understand how they would

need to be positioned underneath the

Orbiter, get a feel for the types of

clearances they had with the structure

around the robotic arm, and evaluate

camera views that would be available

during the operation.

Having the 3-D, interactive viewing

capability allowed crew members to

become comfortable with their

understanding of the procedure in

much less time than would have been

required with just “words” from ground

control. A key aspect to the success

of this scenario was the software and

configuration database commonality

that DOUG provided to all

participants—station and shuttle crews,

ground analysis groups, procedure

developers, mission controllers, and

simulation facilities.

DOUG was loaded on more than

1,500 machines following the

Columbia accident and was used

as a tool to support preflight planning

and procedures development as well

as on-orbit reviews of all robotic

and EVA operations. In addition

to its basic capabilities, the software

possessed many other features that

made it a powerful planning and

visualization tool.

Expansion of Capabilities

DOUG has also been repackaged

into a more user-friendly application

referred to as Engineering DOUG

Graphics for Exploration (EDGE).

This application is a collection of

utilities, documentation, development

tools, and visualization tools wrapped

around the original renderer. DOUG is

basically the kernel of the repackaged

version, which includes the addition

of various plug-ins, models, scripts,

simulation interface code, graphical

user interface add-ons, overlays, and

development interfaces to create a

visualization package. The project

allows groups to quickly visualize

their simulations in 3-D and provides

common visuals for future program

cockpits and training facilities.

It also allows customers to expand

the capabilities of the original

software package while being able to

leverage off the development and

commonality achieved by that software

in the Space Shuttle and ISS Programs.

EDGE is now publicly available.

To request a copy, call or email:

Technology Transfer and

Commercialization Office

NASA Johnson Space Center

Phone: 281-483-3809

Email: jsc-techtran@mail.nasa.gov

Summary

The graphics-rendering software

developed by NASA to support

astronaut training and engineering

simulation visualization during

the shuttle era provided the

cornerstone for commonality among

ground-based training facilities for

both the Space Shuttle and the ISS.

The software has evolved over the

years to take advantage of

ever-advancing computer graphics

technology to keep NASA training

simulators state of the art and to

provide a valuable resource for future

programs and missions.

Engineering Innovations 269

